If alpha≤2sin−1x+cos−1x≤β, then
α=−π2β=π2
α=−π2β=3π2
α=0β=π
α=0β=2π
α≤sin−1x+π2≤βsin−1xϵ[−π2,π2]⇒α=0,β=π
If 2sin−1x+cos−1x=2π3, then x =