If α=limn→∞(1n3+1+4n3+1+9n3+1+⋯+n2n3+1) and β=limx→0sin2xsin8x, then a quadratic equation whose roots are α and β is
The value of limn→∞{(n3+1)(n3+23)(n3+33)........(n3+n3)n3}1n is equal to α.eβ∫x31+x3dx, where αϵN,βϵR,then find α−β.___