If αandβ are the complementary angles, then what is cosecα·cosecβsinαsinβ+cosαcosβ-1/2 equal to:
0
1
2
None of these
Explanation for the correct option:
Solving cosecα·cosecβ(sinαsinβ+cosαcosβ)-1/2:
It is given that αandβ are the complementary angles,
⇒α+β=90°...(1)
cosecα·cosecβsinαsinβ+cosαcosβ-1/2=1sinα·1sinβsinαsinβ+cosαcosβ-1/2=1sinα·sinβ1/2sinα·cosβ+cosα·sinβsinβ·cosβ-1/2
As sin(α+β)=sin(α).cos(β)+cos(α).sin(β), so
cosecα·cosecβsinαsinβ+cosαcosβ-1/2=1sinα·sinβ1/2sin(α+β)sinβ·cos90°-α-1/2=1sinα·sinβ1/2sin90°sinβ·cos90°-α-1/2from(1)=1sinα·sinβ1/21sinβ·sinα-1/2Bycos(90°–θ)=sinθ=1sinα·sinβ1/2×sinα·sinβ1/2=1
Hence, the correct answer is option B.