If α=sin-1√32+sin-113 and β=cos-1√32+cos-113, then
α>β
α=β
α<β
α+β=2π
Explanation for the correct option:
Given, α=sin-1√32+sin-113 and β=cos-1√32+cos-113
∴α+β=sin-1√32+cos-1√32+sin-113+cos-113=π2+π2=π
α=π3+sin-113<π3+sin-112
∵sinθ is increasing in 0,π2,
∴α<π3+π6=π2
⇒β>π2>α
⇒α<β
Hence, Option ‘C’ is Correct.