If α=tan−1(4x−4x31−6x2+x4), β=2sin−1(2x1+x2) and tanπ8=k, then
α+β=π for x ϵ[1,1k)
α=β for x ϵ(−k, k)
α+β=−π for x ϵ[1,1k)
α+β=0 for x ϵ(−k, k)
Put x = tan θ
⇒α=tan−1(tan 4θ)
=4θ−π for x ϵ[1, 1k)
=4θ for x ϵ (−k,k)
Also β=2(π−2θ) for x ϵ[1, 1k)
=4θ for x ϵ (−k, k)