The correct option is D 56
Given, x2−5x+6=0
⇒ x2−2x−3x+6=0
⇒ x(x−2)−3(x−2)=0⇒ (x−2)(x−3)=0
So, roots are say, α=2,β=3
Thus, 1α+1β=12+13=56
Alternate:
For equation x2−5x+6=0.
Sum of roots=−ba=−(−5)1=5
products of roots=ca=61=6
1α+1β=α+βα⋅β=Sum of rootsProduct of roots=56