If α=x(a×b)+y(b×c)+z(c×a) and [abc]=18 then x+y+z is equal to?
8α·(a+b+c)
α·(a+b+c)
8(a+b+c)
None of these
Explanation for the correct option:
Step 1. Find the value of x+y+z:
Given, α=x(a×b)+y(b×c)+z(c×a)
⇒ α·a=x(a×b)·a+y(b×c)·a+z(c×a)·a
⇒ α·a=0+y(b×c)·a+0
⇒ α·a=y[abc]
Step 2. Find the values of x,y,z:
∵[abc]=18
∴y=α·a[abc]=8α·a
Similarly,
α·b=z(c×a)·b=z[abc]
⇒z=8α·b
Again,
α·c=x(a×b)·c=x[abc]
⇒x=8α·c
Step 3. Put the values of x,y,z in given expression, we get
∴x+y+z=8α·c+8α·a+8α·b=8α·(a+b+c)
Hence, Option ‘A’ is Correct.
If B × A = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c), (z, a), (z, b), (z, c)} Find set A and set B.
If A = (a, b, c), B = (x, y, z). Find B × A
If B × A = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c), (z, a), (z, b), (z, c)}. Find set A and set B.