If (an+1+bn+1)(an+bn) be the A.M of a and b, then n=
1
-1
0
None of these
Explanation for the correct option:
Step 1. Find the value of n:
Arithmetic mean of a and b, AM =(a+b)2
Given that AM =(an+bn)(an-1+bn-1)
⇒ (a+b)2=(an+bn)(an-1+bn-1)
Step 2. By Cross multiplying, we get
2(an+bn)=(a+b)(an-1+bn-1)
⇒ 2an+2bn=aan-1+abn-1+ban-1+bbn-1
⇒ 2an+2bn=an+abn-1+ban-1+bn
⇒ an+bn-abn-1-an-1b=0
⇒aan-1-an-1b+bbn-1-abn-1=0
⇒ an-1(a-b)-bn-1(a-b)=0
⇒ (an-1-bn-1)(a-b)=0
⇒ (an-1-bn-1)=0
⇒ an-1=bn-1
⇒ abn-1=1
⇒ abn-1=ab0
Step 3. By Comparing powers, we get
n-1=0
∴n=1
Hence, Option ‘A’ is Correct.
If an+1+bn+1an+bn be the A.M. of a and b, then n=