wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
(a) An + An −2 = 1n-1

(b) An + An − 2 < 1n-1

(c) An − An − 2 = 1n-1

(d) none of these

Open in App
Solution

(a) An + An −2 = 1n-1
An=Area bounded by the curve y=tanxn=tannx and the lines x=0, y=0, and x=π4.

Therefore,

An=0π4tannxdxAn-2=0π4tann-2xdx
Consider, An=0π4tannxdx
An=0π4tann-2xtan2xdxAn=0π4tann-2xsec2x-1dxAn=0π4tann-2xsec2x-tann-2xdxAn=0π4tann-2xsec2xdx-0π4tann-2xdx
An+An-2=0π4tann-2xsec2xdx

Now, An+An-2=0π4tann-2xsec2xdx

Let u=tanxdu=sec2xdx
Also, when x=0, u=0 and when x=π4, u=1

Therefore,

An+An-2=0π4tann-2xsec2xdx
=01un-2du=un-1n-101=1n-1-0=1n-1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon