If (an+bn)(an-1+bn-1) is the G.M of a and b then n=(a,b∈R+,a≠b)
0
1
12
-2
Explanation for the correct option:
Step 1. Find the value of n:
As we know,
G.M of a and b=(ab)
⇒ (an+bn)(an-1+bn-1)=(ab)
⇒ (an+bn)(ab)=(an-1+bn-1)
⇒ an-12b-12-an-1+bn-12a-12–bn-1=0
⇒an-12b-12-a-12+bn-12a-12-b-12=0
⇒ b-12-a-12an-12-bn-12=0
⇒ b-12-a-12=0,an-12-bn-12=0
⇒b-12=a-12,(an-12=bn-12)
⇒ a=b,abn-12=1
⇒ abn-12=ab0
Step 2. By Comparing powers, we get
n-12=0
∴n=12
Hence, Option ‘C’ is Correct.
If an+1+bn+1an+bn be the A.M. of a and b, then n=