If ∝ and β are the roots of the equation ax2 + bx + c = 0, (a,b,c R) , then (1+α+α2) (1+β+β2) is :
>0
α+β= -b/a , αβ= c/a
(1+α+α2) (1+β+β2)
= 1+(α+β)+(α2+β2)+αβ+αβ(α+β)+α2β2
=1+(α+β)+(α+β)2 – αβ+ αβ(α+β)+(αβ)2
=1-b/a + b2a2- ca+ca(−ba)+c2a2
=(a2+b2+c2–ab–bc–ca)a2
= [(a+b)2+(b−c)2+(c−a)2](2a2)