If ∠A=90° in the triangle ABC, then tan-1ca+b+tan-1ba+c=
0
1
π4
π6
π8
Find the value of :
tan-1ca+b+tan-1ba+c:
Given, ∠A=90° in the triangle ABC
⇒a2=b2+c2
∴tan-1ca+b+tan-1ba+c=tan-1ca+b+ba+c1-ca+bba+c=tan-1ac+c2+b2+aba2+ab+ac=tan-1ac+a2+aba2+ab+ac=tan-11=π4
Hence, Option ‘C’ is Correct.
In a right triangle ABC, ∠A=90° then
If sin[90 - (A+B)] = cosx = cosy, then find the value of x and y; if y is the angle C of triangle ABC. (In triangle ABC, A + B = 90∘)