If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P
Consider Δ ABC is a right angled triangle
According to the question,
tan A = tan P
∴ tan A = BCAB and tan P = ABBC
⇒ BCAB = ABBC
⇒ BC2 = AB2
⇒ BC = AB
So, tan A = BCAB = ABAB = 1
⇒ tan A = 1
∴ A = 45∘
Same way, tan P = 1 and P = 45∘
Hence, ∠P = ∠A