We have,
In ΔABCandΔPQR
Given that, ∠Band∠Q are acute angles
∴AC=k×PRandAB=k×PQ
From ΔACB
By Pythagoras theorem,
AB2=AC2+BC2
⇒(k×PR)2=(k×PQ)2+BC2
⇒k2×PR2=k2×PQ2+BC2
⇒BC2=k2×PR2−k2×PQ2
⇒BC2=k2[PR2−PQ2]
⇒BC=k√PR2−PQ2
From right angle triangle PRQ,
Using Pythagoras theorem,
We have,
PQ2=PR2+QR2
⇒QR2=PQ2−PR2
Hence,
ΔACB∼ΔPRQ(S.S.S.similaritytriangle)
∴∠B=∠Q
Hence, this is the answer.