If ∠C=90° in the triangle ABC, then tan-1bb+c+tan-1bc+a=
π2
π4
π3
π
Find the value of :
tan-1bb+c+tan-1bc+a:
Given, ∠C=90° in the triangle ABC
⇒c2=a2+b2
∴tan-1bb+c+tan-1bc+a=tan-1bb+c+bc+a1-bb+cbc+a=tan-1ac+a2+b2+bcc2+bc+ac=tan-1ac+c2+bcc2+bc+ac=tan-11=π4
Hence, Option ‘B’ is Correct.
If sin[90 - (A+B)] = cosx = cosy, then find the value of x and y; if y is the angle C of triangle ABC. (In triangle ABC, A + B = 90∘)