wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If any point O in the interior of a triangle ABC. Prove that AB + BC + CA > OA + OB + OC.

Open in App
Solution

InΔPBOBP+PO>OBAddingOCanbothsidesweget,BP+PO+OC>OB+OCBP+PC>OB+OCBP+PC>OB+OC(i)[PO+OC=PC]InΔAPCAP+AC>PCAddingBPonbothsides,wegetAP+AC+BP>PC+BP(ii)[AP+PB=AB]from(i)&(ii)AB+AC>BP+PC>OB+OCAB+AC>OB+OC(iii)similarlyBC+AC>OB+OA(iv)AB+BC>OA+OC(v)addingequation(3)(4)(5)weget2(AB+BC+CA)>2(OA+OB+OC)AB+BC+CA>OA+OB+OC
1212068_1141319_ans_c9b2e28c92ca4d4290a06f3af2b71495.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inequalities in Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon