If any two chords be drawn through two points on the major axis of the ellipse x2a2+y2b2=1 equidistant from the centre. If α,β,γ,δ are the eccentric angles of the extremities of the chords, then the value of tanα2tanβ2tanγ2tanδ2, is
The equation of chord whose eccentric angles are α and β is
xacos(α+β2)+ybsin(α+β2)=cos(α−β2)
Let it cut the positive direction of x axis at a distance c, then
cacos(α+β2)+0bsin(α+β2)=cos(α−β2)⇒cacos(α+β2)=cos(α−β2)⇒cos(α+β2)cos(α−β2)=ac⇒ac+1ac−1=⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩cos(α+β2)cos(α−β2)+1⎫⎪ ⎪ ⎪ ⎪⎬⎪ ⎪ ⎪ ⎪⎭⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩cos(α+β2)cos(α−β2)−1⎫⎪ ⎪ ⎪ ⎪⎬⎪ ⎪ ⎪ ⎪⎭⇒a+ca−c=cos(α+β2)+cos(α−β2)cos(α+β2)−cos(α−β2)⇒−2cosα/2cosβ/22sinα/2sinβ/2=a+ca−c⇒tanα2tanβ2=c−ac+a ......(i)
Similarly equation of chord whose eccentric angle are γ and δ is
xacos(γ+δ2)+ybsin(γ+δ2)=cos(γ−δ2)
Let it cuts the axis at at distance −c from the origin . then
tanγ2tanδ2=−c−a−c+a=c+ac−a .....(ii)
On multiplying (i) and (ii), we get
⇒tanα2tanβ2tanγ2tanδ2=c−ac+a×c+ac−a=1
So, option B is correct.