wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Ar=1r2r2nn2nn n+122n+1, then the value of r=1n Ar is
(a) n
(b) 2n
(c) − 2n
(d) n2

Open in App
Solution

Ar = 1 r 2r2 n n2n nn+12 2n+1r=1nAr = r=1n1 r=1n r r=1n 2rr=1n2 n n2n nn+12 2n+1As r=1n1 = 1 + 1 + 1 ... + 1 (n times) = n r=1n r = 1 + 2 + 3 + ...+ n= nn + 12 Let S=r=1n 2r=2 + 22 + 23= ... + 2n 2S = 22 + 23=...+ 2n + 2n+12S - S = S =r=1n 2r= 2n+1 - 2r=1nAr= n nn+12 2n+1-22n n n2 n nn+12 2n+1 Applying R1R1-R2r=1nAr= n -n nn+12 - nn+12 2n+1-2- 2n+12n n n2 n nn+12 2n+1=0 0 -22n n n2 n nn+12 2n+1=-2 × 2n n n nn+12 =-2n3 + n2 - n2=-2n3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon