wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α, β are the roots of the equation x2+px+1=0;γ,δ the roots of the equation x2+qx+1=0, then (α-γ)(α+δ)(β-γ)(β+δ)=
(a) q2-p2
(b) p2-q2
(c) p2+q2
(d) none of these.

Open in App
Solution

(a) q2-p2
Given: α and β are the roots of the equation x2 + px + 1 = 0.
Also, γ and δ are the roots of the equation x2 + qx + 1 = 0.
Then, the sum and the product of the roots of the given equation are as follows:
α + β =-p1 =-pαβ = 11 = 1γ + δ =-q1 =-qγδ = 11 = 1


Moreover, (γ + δ)2 = γ2 + δ2 +2γδγ2 + δ2 = q2 - 2


(α - γ) (α + δ) (β - γ) (β + δ) = (α - γ) (β - γ) (α + δ) (β + δ) =αβ -αγ - βγ + γ2 αβ + αδ + βδ + δ2 =αβ -γα + β + γ2 αβ +δ α + β + δ2 = (1 -γ(-p) + γ2 ) (1 + δ(-p) + δ2 ) = (1 +γp + γ2 ) (1 - δp + δ2 ) =1 -pδ + δ2+ pγ - p2γδ + pγδ2 + γ2- pδγ2 + γ2δ2 =1 -pδ + pγ+ δ2 - p2γδ + pγδ2 + γ2- pδγ2 + γ2δ2 =1 - p(δ - γ) - p2γδ+ pγδ (δ - γ) + (γ2 + δ2) + 1 =1 - p2γδ+ pγδ (δ - γ) - p(δ - γ) + (γ2 + δ2) + 1 =1 - p2+ (δ - γ) p (γδ - 1)+ q2 - 2 + 1 =-p2 + (δ- γ) p (1 - 1) + q2 =q2 - p2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon