1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
SSS Criteria for Congruency
If area of ...
Question
If area of
△
A
B
C
=
area of
△
D
E
F
then prove that
△
A
B
C
≅
△
D
E
F
Open in App
Solution
Given
△
A
B
C
∼
△
D
E
F
We know that if two triangles are similar, then the ratio of there are equal to the square of the ratio of its corresponding sides.
a
r
e
a
△
A
B
C
a
r
e
a
△
D
E
F
=
(
B
C
E
F
)
2
=
(
A
B
D
E
)
2
=
(
A
C
D
F
)
2
a
r
e
a
△
D
E
F
a
r
e
a
△
D
E
F
=
(
B
C
E
F
)
2
=
(
A
B
D
E
)
2
=
(
A
C
D
F
)
2
since
a
r
e
a
△
A
B
C
=
a
r
e
a
△
D
E
F
⇒
1
=
(
B
C
E
F
)
2
=
(
A
B
D
E
)
2
=
(
A
C
D
F
)
2
⇒
1
=
(
B
C
E
F
)
2
,
1
=
(
A
B
D
E
)
2
,
1
(
A
C
D
F
)
2
⇒
B
C
E
F
=
1
,
A
B
D
E
=
1
,
A
C
D
F
=
1
⇒
B
C
=
E
F
,
A
B
=
D
E
,
A
C
=
D
F
Hence by SSS congruency,
△
A
B
C
≅
△
D
E
F
Hence proved.
Suggest Corrections
0
Similar questions
Q.
If
△
A
B
C
∼
△
D
E
F
such that AB = 5 cm, area
(
△
A
B
C
)
=
20
c
m
2
and area
(
△
D
E
F
)
=
45
c
m
2
, determine DE.
Q.
△
A
B
C
∼
△
D
E
F
. IF
B
C
=
4
c
m
,
E
F
=
5
c
m
and area
(
△
A
B
C
)
=
32
c
m
2
, determine the area of
△
D
E
F
.
Q.
If ∆ABC and ∆DEF are two triangles such that
AB
DE
=
BC
EF
=
CA
FD
=
3
4
, then write Area (∆ABC) : Area (∆DEF)