The correct option is
A 2√2πarg (z−1z+1)=±π4.
or, arg(−z1)−arg(z+1)=±π4
Let z=x+iy⇒arg(x+iy−1)−arg(x+iy+1)=±π4.
⇒tan−1(yx−1)−tan−1(yx+1)=±π4
or, tan−1⎛⎜
⎜⎝yx−1−yx+11+yx−1×yx+1⎞⎟
⎟⎠=±π4
or, 2y(x−1)(x+1)+y2=±1 [∵tan(±π4)=±1]
Taking (+1)⇒x2+y2−2y−1=0
∴ Centre at (0,1) and radius =√2
Taking (−1)⇒−x2−y2−2y+1=0
or, x2+y2+2y−1=0
∴ Centre at (0,−1) and radius =√2
So, radius is same in both case.
∴ Length of Path traced =2πr=2π√2=2√2x Ans.