The correct option is D √10
arg⎛⎜⎝z1−z|z|z|z|⎞⎟⎠=π2 ...(1)
∣∣∣z|z|−z1∣∣∣=3 ...(2)
Let z=r1cis(A)&z1=r2cis(B)
Substitute in eq. (1) we get,
arg(r2cis(B)−cis(A)cis(A))=π2
arg(r2cis(B−A)−1)=π2
⟹arctan(r2sin(B−A)r2cos(B−A)−1)=π2
⟹cos(B−A)=1r2 ...(3)
Now substitute z&z1 in eq. (2)
|cis(A)−r2cis(B)|=3
⟹(cosA−r2cosB)2+(sinA−r2sinB)2=9
⟹1+r22−2r2(cosAcosB+sinBsinA)=9
⟹1+r22−2r2(cos(A−B))=9
⟹1+r22−2=9 ...{from (3)}
⟹1+r22−2=9⟹r2=√10
Hence, option 'B' is correct.