Given 2 arg(z1/3)=arg(z2+¯zz1/3)
or arg(z2+¯zz1/3)−arg(z2/3)=0
∵n arg=argzn
arg(z2+¯zz1/3z2/3)=0
∴z4/3+¯zz−1/3 is purely real
∵argz=0⇒z is real
Now we know that if A is real than A=¯A
∴z4/3+¯zz1/3=(¯z)4/3+z(¯z)1/3
or z4/3−(¯z)4/3=z(¯z)1/3−¯zz1/3=z4/3−(¯z)4/3(z¯z)1/3
or [z4/3−(¯z)4/3](1−1|z|2/3)=0
Since z≠¯z therefore we have
1−1|z|2/3=0 or |z|2/3=1 or |z|=1