wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If arg(z1/3)=12arg(z2+¯¯¯zz1/3), then find the value of |z|.
(Note : z has both real and imaginary components. If θ is the argument of z , then use θ3 as the argument of z1/3 and 0<θ<π2)

Open in App
Solution

We have
arg(z1/3)=12arg(z2+¯¯¯zz1/3)
2arg(z1/3)=arg(z2+¯¯¯zz1/3)
arg(z2/3)=arg(z2+¯¯¯zz1/3) (By Prop.)
arg(z2+¯¯¯zz1/3)arg(z2/3)=0
arg(z2+¯¯¯zz1/3z2/3)=0 (By Prop.)
arg(z4/3+¯¯¯zz1/3)=0z4/3+¯¯¯zz1/3 is purely real
Im(z4/3+¯¯¯zz1/3)=0
z4/3+¯¯¯zz1/3=(¯¯¯z)4/3+(¯¯¯z)(¯¯¯z)1/3
z4/3+(¯¯¯z)(¯¯¯z)1/3|z|2/3=(¯¯¯z)4/3+z(z)1/3|z|2/3
z4/3(¯¯¯z)4/31|z|2/3((z)4/3(¯¯¯z)4/3)=0
{z4/3(¯¯¯z)4/3}[11|z|2/3]=0
|z|2/3=1 (z¯¯¯z)
|z|=1
Ans: 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon