Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|z|=2a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
arg(z)=π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
arg(z)=π3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A|z|=a Darg(z)=π3 Let z=x+iy (z−a) =(x−a)+i(y) Argument is 2π3 Hence (x−a)2(x−a)2+y2=14 3(x−a)2=y2 ...(i) z+a =(x+a)+iy Now argument is π6 Hence y2(x+a)2+y2=14 3y2=(x+a)2 9(x−a)2=(x+a)2 (x+a)=±(3x−3a) x+a=3x−3a x=2a and x+a=−3x+3a x=a2 Hence 3y2=(x+a)2 3y2=9a2 y=±√3a z=a(2±√3i)...(n) or 3y2=9a24 y=±√3a2 z=a(1±√3i2) Hence |z|=|a(1±√3i2)|=a Now we consider z=a(1+√3i2) arg(z)=π3 Hence, option 'D' is correct.