If Arg (z+i)− Arg (z−i)=π2, then z lies on a circle.
If statement is True, enter 1, else enter 0
Open in App
Solution
We have Arg (z+i)− Arg (z−1)=π2⇒ Arg (z+iz−i)=π2 ∴Re(z+iz−i)=0⇒(z+iz−i)+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(z+iz−i)2=0
⇒(z+iz−i)+(¯¯¯z−i¯¯¯z+i)=0 ⇒(z+i)(¯¯¯z+i)+(z−i)(¯¯¯z−i)=0 ⇒z¯¯¯z+i(¯¯¯z+z)−1+z¯¯¯z−i(z+¯¯¯z)−1=0 ⇒2(z¯¯¯z)=2⇒z¯¯¯z=1|z|2=1⇒|z|=1 The equation represents a circle centered at origin and radius 1 units.