If arg(z) less than 0, then arg(−z)−argz equal
π
-π
-π/2
π/2
Find the value of arg(−z)−argz:
Let z=r(cosθ+isinθ)
Given that If arg(z) less than 0
⇒arg(z)=θ<0
Now, -z=-r(cosθ+isinθ)
=r(cos(π+θ)+isin(π+θ))
Thus, arg(-z)=π+θ
Therefore arg(-z)-arg(z)=π+θ-θ
=π
Hence, the correct option is A.