The correct option is B (10,∞)
Let f(x)=x2−(a−3)x+a
Case 1: Both the roots lie in the interval (1,2)
(i) D≥0⇒(a−3)2−4a≥0
⇒a2−10a+9≥0⇒(a−1)(a−9)≥0⇒a∈(−∞,1]∪[9,∞) ⋯(1)
(ii) 1<−b2a<2⇒1<a−32<2⇒5<a<7 ⋯(2)
(iii) f(1)>0 f(2)>0⇒4>0 10−a>0⇒a<10 ⋯(3)
∴(1)∩(2)∩(3)⇒a∈ϕ ⋯(4)
Case 2: Exactly one root lies in the interval (1,2)
f(1)f(2)<0
⇒4(10−a)<0
⇒a∈(10,∞) ⋯(5)
Checking for boundary condition, when a=10, then
f(x)=x2−7x+10=(x−2)(x−5)f(x)=0⇒x=2,5∉(1,2)
Hence, from equation (4) and (5), we get
x∈(10,∞)