wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ax21+by21+cz21=ax22+by22+cz22=ax23+by23+cz23=d and ax2x3+by2y3+cz2z3=ax3x1+by3y1+cz3z1=ax1x2+by1y2+cz1z2=f, then prove that ∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣=(df)[d+2fabc]1/2(a,b,c0)

Open in App
Solution

Given ,
ax21+by21+cz21=ax22+by22+cz22=ax23+by23+cz23=d .....(1) ax2x3+by2y3+cz2z3=ax3x1+by3y1+cz3z1=ax1x2+by1y2+cz1z2=f ....(2)
Let Δ=∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣
Δ2=1abc∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣×∣ ∣ax1by1cz1ax2by2cz2ax3by3cz3∣ ∣
=1abc∣ ∣dfffdfffd∣ ∣ (by (1) and (2))
C1C1+C2+C3
=1abc∣ ∣d+2fffd+2fdfd+2ffd∣ ∣=(d+2f)abc∣ ∣1ff1df1fd∣ ∣
On solving it we get
Δ2=(d+2f)abc(df)2
Δ=(df)[d+2fabc]12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon