If ax21+by21+cz21=ax22+by22+cz22=ax23+by23+cz23=d and ax2x3+by2y3+cz2z3=ax3x1+by3y1+cz3z1=ax1x2+by1y2+cz1z2=f, then prove that ∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣=(d−f)[d+2fabc]1/2(a,b,c≠0)
Open in App
Solution
Given , ax21+by21+cz21=ax22+by22+cz22=ax23+by23+cz23=d .....(1) ax2x3+by2y3+cz2z3=ax3x1+by3y1+cz3z1=ax1x2+by1y2+cz1z2=f ....(2) Let Δ=∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣ Δ2=1abc∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣×∣∣
∣∣ax1by1cz1ax2by2cz2ax3by3cz3∣∣
∣∣ =1abc∣∣
∣∣dfffdfffd∣∣
∣∣ (by (1) and (2)) C1→C1+C2+C3 =1abc∣∣
∣∣d+2fffd+2fdfd+2ffd∣∣
∣∣=(d+2f)abc∣∣
∣∣1ff1df1fd∣∣
∣∣ On solving it we get Δ2=(d+2f)abc(d−f)2 Δ=(d−f)[d+2fabc]12