If ax21+by21+cz21=ax22+by22+cz22=ax23+by23+cz23=d and ax2x3+by2y3+cz2z3=ax3x1+by3y1+cz3z1=ax1x2+by1y2+cz1z2=f, where a,b,c,d,f>0 and d>2f, then the value of ∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣ is:
A
(d−f){(d+2f)abc}12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|f−d|{(d−2f)abc}12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(d−f){(d−2f)abc}12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(d−f){(d+f)abc}12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(d−f){(d+2f)abc}12 Let D=∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣ ∴D2=D×D ⇒D2=∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣×∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣ =1abc∣∣
∣∣ax1by1cz1ax2by2cz2ax3by3cz3∣∣
∣∣∣∣
∣∣x1y1z1x2y2z2x3y3z3∣∣
∣∣ =1abc∣∣
∣
∣∣ax21+by21+cz21ax1x2+by1y2+cz1z2ax3x1+by3y1+cz3z1ax1x2+by1y2+cz1z2ax22+by22+cz22ax2x3+by2y3+cz2z3ax3x1+by3y1+cz3z1ax2x3+by2y3+cz2z3ax23+by23+cz23∣∣
∣
∣∣ =1abc∣∣
∣∣dfffdfffd∣∣
∣∣ C1→C1+C2+C3,C2→C2−C3 =1abc∣∣
∣∣d+2f0fd+2fd−ffd+2ff−dd∣∣
∣∣ =(d+2f)(d−f)abc∣∣
∣∣10f11f1−1d∣∣
∣∣
On expanding and solving the determinant, we have: