wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ax21+by21+cz21=ax22+by22+cz22=ax23+by23+cz23=d and
ax2x3+by2y3+cz2z3=ax3x1+by3y1+cz3z1=ax1x2+by1y2+cz1z2=f, where a,b,c,d,f>0 and d>2f, then the value of ∣∣ ∣∣x1y1z1x2y2z2x3y3z3∣∣ ∣∣ is:

A
(df){(d+2f)abc}12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|fd|{(d2f)abc}12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(df){(d2f)abc}12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(df){(d+f)abc}12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (df){(d+2f)abc}12
Let D=∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣
D2=D×D
D2=∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣×∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣
=1abc∣ ∣ax1by1cz1ax2by2cz2ax3by3cz3∣ ∣∣ ∣x1y1z1x2y2z2x3y3z3∣ ∣
=1abc∣ ∣ ∣ax21+by21+cz21ax1x2+by1y2+cz1z2ax3x1+by3y1+cz3z1ax1x2+by1y2+cz1z2ax22+by22+cz22ax2x3+by2y3+cz2z3ax3x1+by3y1+cz3z1ax2x3+by2y3+cz2z3ax23+by23+cz23∣ ∣ ∣
=1abc∣ ∣dfffdfffd∣ ∣
C1C1+C2+C3, C2C2C3
=1abc∣ ∣d+2f0fd+2fdffd+2ffdd∣ ∣
=(d+2f)(df)abc∣ ∣10f11f11d∣ ∣
On expanding and solving the determinant, we have:

D2=(d+2f)(df)2abc
D=(df){(d+2f)abc}12

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon