If ax−1=bc, by−1=ac, cz−1=ab such that x,y,z are integers then value of xy+yz+zx–xyz is
ax−1=bc
⇒axa=bc
⇒ax=abc
⇒a=(abc)1x---------(1)
by−1=ac
⇒byb=ac
⇒by=abc
⇒b=(abc)1y-----(2)
cz−1=ab
⇒czc=ab
⇒cy=abc
⇒c=(abc)1z-------(3)
Now, from equations (1), (2) and (3),
abc=(abc)1x(abc)1y(abc)1z
⇒(abc)1=(abc)1x+1y+1y
⇒1x+1y+1y=1
⇒xy+yz+zxxyz=1
⇒xy+yz+zx=xyz
∴xy+yz+zx−xyz=0