If ax2+2hxy+by2+2gx+2fy+c=0 represents two straight lines equidistant from the origin, then f4−g4
ax2+2hxy+by2+2gx+2fy+c=0
let the twe lines be.
L1;y=m1x+c1
L2:y=m2x+c2
(m1x+c1−y)(m2x+c2−y)=0− (ii)
on comparing (i) and(ii) , we got
on comparing
(i) and (ii), we got
m1c2+m2c1=2gb & c1+c2=−2fb
m2m2 =ab & c1c2=cb
Now,
|c1|√1+m22=∣c21√1+m22
Squaring both sides and cross-multiply
⇒c21+c21m22=c22+c22m21
⇒(e21−c22)=(c22m22−c21m22)
⇒(c1+c2)(c1−c2)=(c2m1+c1m2)(c2m1−c1m2)
⇒(c1+c2)√(c1+c2)2−4c1c2=(c2m1+c1m2)
√(E2m1+C1m2)2−4m1m2C1C2
⇒−2fb√4f2b2−4cb=2qb√4g2b2−4ab
⇒g2(g2−acb2)=f2(f2−bcb2)
⇒f4−g4=c(bf2−ag2)