If ax2+bx+1 and bx2+ax+1 have a common root, and b≠a, then the common root is:
ax2+bx+1=0bx2+ax+1=0letcommonrootbeα,αsatisfiesboththeequationsaα2+bα+1=0−equation1bα2+aα+1=0−equation2equation1−2(b2α+b)−(α2α+1)=0(b2−a2)α+(b−a)=0α=−b−a(b−a)(b+a)∴α=−1a+b