Given equation ax2+bx+6=0 does not have distinct real roots. Hence,
⇒f(x)=ax2+bx+6≤0, ∀ x∈R, if a<0
or
f(x)=ax2+bx+6≥0, ∀ x∈R, if a>0
But f(0)=6>0
⇒f(x)=ax2+bx+6≥0, ∀ x∈R
⇒f(3)=9a+3b+6≥0
⇒3a+b≥−2
Therefore, the least value of 3a+b is −2.
Alternate Solution:
Given equation ax2+bx+6=0 does not have distinct real roots.
Hence, D≤0
⇒b2−24a≤0
⇒3a≥b28
Now, 3a+b≥b28+b
⇒3a+b≥(b+4)2−168
3a+b is minimum when (b+4)2 is minimum.
Thererfore, minimum value of 3a+b=0−168=−2