If ax2+bx+c=0 and bx2+cx+a=0 have a common root and a,b,c are non-zero real numbers, thena3+b3+c3abc is equal to:
3
ax2+bx+c=0 and bx2+cx+a=0 has a common root, then
x2ab−c2=xcb−a2=1ac−b2
x2ab−c2=1ac−b2
⇒x2=ab−c2ac−b2........(1)
xcb−a2=1ac−b2
⇒x=cb−a2ac−b2
Using (1)
ab−c2ac−b2=(cb−a2ac−b2)2
⇒(cb−a2)2=(ab−c2)(ac−b2)
⇒b2c2+a4−2a2bc=a2bc−ab3−ac3+c2b2
⇒a3+b3+c3=3abc