If ax2+bx+c=0 and bx2+cx+a=0 have a common root. And a,b≠0, then find the value of a3+b3+c3abc
3
Given,
Two quadratic equationsax2+bx+c=0 and bx2+cx+a=0
having one root in common.
Let common root be α.
⇒aα2+bα+c=0 .......(1)
And, bα2+cα+a=0 .......(2)
On applying the condition for one common root we get
(bc−a2)2=(ca−b2)(ab−c2)
On simplifying we get
⇒(bc)2+(a2)2−2a2bc=a2bc−c3a−b3a+b2c2
⇒a4+a(b3+c3)=3a2bc
⇒a[a3+b3+c3]=3a2bc
⇒a3+b3+c3=3abc
⇒a3+b3+c3abc=3
Hence, the value of given expression is 3.