The correct option is
C 2aca2−c2Comparing both the equations,
ax+bsectan−1x=c and ay+bsectan−1y=c we have
⇒ax+bsectan−1x=ay+bsectan−1y
⇒ax+bsectan−1x−ay−bsectan−1y=0
⇒ax−ay+bsectan−1x−bsectan−1y=0
⇒ax−ay=0 or b(sectan−1x−sectan−1y)=0
⇒ax=ay or b≠0,sectan−1x−sectan−1y=0
⇒x=y or sectan−1x−sectan−1y=0
Let x=tanθ
Consider ax+bsectan−1x=c
⇒atanθ+bsectan−1tanθ=c
⇒atanθ+bsecθ=c ......(1)
⇒asinθcosθ+b1cosθ=c
⇒asinθ+b=ccosθ
or ccosθ−asinθ=b ......(2)
Let a2+c2=r2 for some α
where a=rcosα,a=rsinα
then tanα=ac
Thus,cosαcosθ−sinαsinθ=br
⇒cos(α+θ)=br
⇒α+θ=±cos−1br
Let α+θ be the positive solution, and α+θ the negative solution, where y=tanϕ
⇒α+ϕ=−(α+θ)
⇒−2α=θ+ϕ
Taking tangents, both sides,we get
tan(−2α)=tan(θ+ϕ)
−2tanα1−tan2α=tanθ+tanϕ1−tanθtanϕ
⇒−2ac1−a2c2=x+y1−xy
⇒2aca2−c2=x+y1−xy
∴x+y1−xy=2aca2−c2