If A={x∈R∶|x|<2}and B={x∈R∶|x-2|≥3} then
A–B=[-1,2]
B–A=R-(-2,5)
A∪B=R-(2,5)
A∩B=(-2,-1)
Finding the value:
Given,
⇒A=x:x∈(-2,2)⇒B=x:x∈(∞,-1]∪[5,∞)⇒A∩B=x:x∈(-2,-1]⇒B–A=x:x∈(∞,-2]∪[5,∞)⇒A–B=x:x∈(-1,2)⇒A∪B=x:x∈(∞,2]∪[5,∞)
On comparing 4 options only Option-B is satisfied
Hence, Option (B) is correct.