If Ax+By=1 is a normal to the curve ay=x2, then
4A2(1−aB)=aB3
4A2(2+aB)=aB3
4A2(1+aB)=aB3
2A2(2−aB)=aB3
ay=x2⇒−1(dydx)=−a2x1=−AB ⇒x1=aB2A and y1=1B−a2 Put (x1,y1)inay=x2 We get, 2A2(2−aB)=aB3