Equation of plane passing through (4,−1,2) is: a(x−4)+b(y+1)+c(z−2)=0
and parallel to the lines,
x+23=y−2−1=z+12 and x−21=y−32=z−43,
⇒D.r′s of L1=(3,−1,2)
and D.r′s of L2=(1,2,3)
So, D.r′s of normal to the plane is :
∣∣
∣
∣∣^i^j^k3−12123∣∣
∣
∣∣=−7^i−7^j+7^k
D.r′s of normal =(−7,−7,7)≡(−1,−1,1)
So, equation of plane is −(x−4)−(y+1)+(z−2)=0
⇒x+y−z−1=0
⇒a=1,b=1,c=−1
∴4a+3b+2c=5