If ax + cy + bz = X, cx + by + az = Y, bx + ay + cz = Z, show that : (a3+b3+c3−3abc)(x3+y3+z3−3xyz)=(X3+Y3+Z3−3XYZ)
Open in App
Solution
(a3+b3+c3−3abc)(x3+y3+z3−3xyz) (a+b+c)(a2+b2+c2−bc−ca−ab)×(x+y+z)(x2+y2+z2−yz−zx−xy) ...(1) Now (a+b+c)(x+y+z)=[(ax+cy+bz)+(cx+by+az)+(bx+ay+cz)] = X + Y + Z ...(2) And by part (1) we have (a2+b2+c2−bc−ca−ab)(x2+y2+z2−yz−zx−xy) =X2+Y2+Z2−YZ−ZX−XY ........(3) Substituting from (2) and (3) in (1). we get (a3+b3+c3−3abc)(x3+y3+z3−3xyz) =(X+Y+Z)(X2+Y2+Z2−YZ−ZX−XY) =X3+Y3+Z3−3XYZ