If b2, a2, c2 are in A.P., then a + b, b + c, c + a will be in
H.P
Given that b2, a2, c2 are in A.P.
Therefore a2 - b2 = c2 - a2
⇒ (a - b)(a + b) = (c - a)(c + a)
⇒ a−bc+a = c−aa+b ⇒ b−a+c−c(c+a)(b+c) = a+b−b−c(b+c)(a+b)
⇒ 1b+c - 1a+b = 1c+a - 1b+c
⇒ 1a+b , 1b+c, 1c+a are in A.P.
Hence (a + b), (b + c), (c + a) are in H.P.