If b>a, then ∫abdx(x-a)(b-x)]=?
Finding the value of integral ∫abdx(x-a)(b-x)]:
Given that b>a, and ∫abdx(x-a)(b-x)]
=∫abdxbx-ab-x2+ax]
=∫abdx-x2+x(a+b)-ab]
=∫abdx-(x2-x(a+b)+ab)]
=∫abdx-(x-a+b2)2-ab+(a+b2)2]
=sin-1(b-a+b2)b-a2-sin-1(a-a+b2)b-a2
=sin-1(1)-sin-1(-1)
=π2-(-π2)
=π
Hence, the value of ∫abdx(x-a)(b-x)]is π.