If ∝, β are the roots of the equation x2−ax+b=0, then α4+α3β+α2β2+αβ3+β4
None of these
a3+3a2b + b2
a4+3a2b + b2
a4−3a2b + b2
α+β =a, αβ =b
therefore α4+α3β+α2β2+αβ3+β4
= (α+β) (α3+β3) + α2β2
=(α+β)2[(α+β)2−3αβ]+ (αβ)2 =a2(a2–3b) +b2 =a4–3a2b + b2
If ∝, β are the roots of the equation x2 - ax + b = 0, then α4+α3β+α2β2+αβ3+β4