If bāc,2bāx and bāa are in H.P. then aāx2,bāx2 and cāx2are in
A
A.P.
No worries! Weāve got your back. Try BYJUāS free classes today!
B
G.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
H.P.
No worries! Weāve got your back. Try BYJUāS free classes today!
D
None
No worries! Weāve got your back. Try BYJUāS free classes today!
Open in App
Solution
The correct option is BG.P. b−c,2b−x and b−a are in H.P. ⇒2b−x=2(b−c)(b−a)2b−(a+c)⇒x=2b−2(b2−ab−bc+ac)2b−(a+c)=2(b2−ac)2b−(a+c)a−x2=a−(b2−ac)2b−(a+c)=(a−b)2a+c−2bb−x2=b−(b2−ac)2b−(a+c)=(a−b)(c−b)2b−a−cc−x2=c−(b2−ac)2b−(a+c)=(b−c)2a+c−2b⇒(b−x2)2=(a−x2)(c−x2) so (a−x2),(b−x2),(c−x2) are in G.P.