b−c,2b−x,b−a are in HP
⇒2b−x=2(1b−c+1b−a) [If a,b,c are in HP then b=2/(1/a+1/c)]
⇒x=2b−2(b−c)(b−a)(b−a)+(b−c)
Claim a−x2,b−x2,c−x2 are in G.P
(b−x2)2=(b−b+(b−c)(b−a)(b−a)+(b−c))2=(b−c)2(b−a)2((b−a)+(b−c))2
(a−x2)(c−x2)=[(a−b)+(b−c)(b−a)(b−a)+(b−c)][(c−b)+(b−c)(b−a)(b−a)+(b−c)]
=[−(b−a)+(b−c)(b−a)(b−a)+(b−c)][−(b−c)+(b−c)(b−a)(b−a)+(b−c)]
=(b−a)(b−c)[−1+b−c(b−a)+(b−c)][−1+(b−a)(b−a)+(b−c)]
=(b−a)(b−c)[−(b−a)−(b−c)+(b−c)(b−a)+(b−c)][−(b−a)(b−a)+(b−a)(b−a)+(b−c)]
=(b−a)(b−c)(−(b−a))(−(b−c))[(b−a)+(b−c)]2
=(b−a)2(b−c)2[(b−a)+(b−c)]2=(b−x2)2
We know that a,b,c are in G.P if b2=ac
∵(b−x2)2=(a−x2)(c−x2)
⇒(a−x2),(b−x2),(c−x2) are in G.P