Since b+c=3a we have sinB+sinC=3sinA
or 2sinB+C2cosB−C2=6sinA2cosA2
or cosB−C2=3sinA2[∵sinB+C2=cosA2]
or cosB−C2=3cosB+C2
or {cosB−C2}/{cosB+C2}=31
Apply C and D∴cot(B/2)cot(C/2)=2
Converse Method:
On putting the value of (B/2) and (C/2) in R.H.S you will get
s/(s−a)=2 or s=2a
or a+b+c=4a∴b+c=3a.
This proves the converse.