If b+ic=(1+a)z and a2+b2+c2=1, where a,b,c∈R, then 1+iz1−iz=a+ibk where k is equal to
A
1+a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1+b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2+b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1+c Given a2+b2+c2=1…(1)
and z=b+ic1+a ⇒iz1=ib−c1+a
Applying componendo and dividendo rule, we get 1+iz1−iz=1+a+ib−c1+a−ib+c=(1+a−c)+ib(1+a+c)−ib=(1+a−c)+ib(1+a+c)−ib×(1+a+c)+ib(1+a+c)+ib=(1+a−c)(1+a+c)−b2+ib(1+a−c+1+a+c)(1+a+c)2+b2=1+a2+2a−c2−b2+2ib(1+a)1+a2+b2+c2+2a+2c+2ac=a2+2a+a2+2ib(1+a)2+2a+2c+2ac[∵a2+b2+c2=1]=2(1+a)(a+ib)2(1+a)(1+c) =a+ib1+c
On comparing with a+ibk, we get k=1+c