The correct option is
A 0The sum of exterior angles of a polygon is 2π or 360∘
If it is a regular polygon
Exterior Angles =2πn
n is no of sides
According to question
B=2πn.
cosA+cos(A+B)+cos(A+2B)+...n+terms
=cosA+cos(A+2πn)+cos(A+2(2πn))+...+cos(A+(n−2)2πn)+cos(A+(n−1)2πn)
cosA+cos(A+2πn)+cos(A+2(2πn))+...+cos(A+n(2πn)−2(2πn))+cos(A+n(2πn)−2πn)
=cosA+cos(A+2πn)+cos(A+2(2πn))+...+cos(A+2π−2(2πn))+cos(A+2π−2πn)
=cosA+cos(A+2πn)+cos(A+2(2πn))+...+cos(A−2(2πn))+cos(A−2πn)
{∵cos(2π−θ)=cosθ}
=cosA+cos(A)cos(2πn)−sin(A).sin(2πn)+cosA.cos4πn−sinA
sin4πn+...+cosA.cos4πn+sinAsin4πn+cosA.cos2πn+sinA.sinπn
=cosA+cosA.cos2πn+cosAcos4πn+...cosAcos4πn+cosA.cos2πn.
=cosA{1+cos2πn+cos4πn+...cos4πn+cos2πn}
=cosA(1−1)
=0