If b2,a2,c2are in A.P., then a+b,b+c,c+a, will be in
A.P
G.P
H.P
None of these
Explanation for the correct option:
Finding the terms a+b,b+c,c+a, will be in:
Given b2,a2,c2 are in A.P
ā a2-b2=c2-a2
ā (a-b)(a+b)=(c-a)(c+a)
ā (a-b)(c+a)=(c-a)(a+b)
ā (a+c)-(b+c)(c+a)(b+c)=(b+c)-(a+b)(a+b)(b+c)
ā 1(b+c)ā1(c+a)=1(a+b)ā1(b+c)
ā1(b+c)ā1(a+b)=1(c+a)ā1(b+c)
ā1(a+b),1(b+c),1(c+a) are in AP
ā“a+b,b+c,c+a are in HP
Hence, Option āCā is Correct.
If a2,b2,c2 are in A.P. prove that ab+c,bc+a,ca+b are in A.P.
If a, b, c are in A.P., then (b+c)2-a2, (a+c)2 -b2, (a+b)2 -c2 are in....